Manual

Para poder criar uma rotina no sistema sera necessario no minimo criar uma
migration e um model. Se for necessaria uma tela que fuja do padrédo, uma view
devera ser criada também. Também deverao ser criados os registros de rotina e os

registros de menu.

Para criar a rotina no seeder da rotina, basta referenciar o nome, o
prefixo(nome do sistema s6 para acesso rapido), slug (AppHelper::getClassName

faz o slug perfeitamente referenciando a classe). Classes de Model e Controller,

além de referenciar o id do sistema.

‘model’
‘controller’
‘sistema id’

1);

Para criar o menu, no seeder da rotina, basta referenciar o nome, o icone, a
ordem em que ira aparecer, o id do sistema, a rota que o menu ira redirecionar, a

agao executada, qual a rotina que o menu utiliza e qual o menu pai desse menu.

D | create([

‘nome' => "Grupo’,

"icone® =»> 'fa-solid fa-screwdriver-wrench®,
‘ordem” =»> 5

‘sistema_id’ : :ESTRUTURA ID

‘route’ STR WM. "L r::getClassName{Grupo::class, true)}.'.index',

re('slug', "grupo’)->first()->id,

Outras features podem ser realizadas criando um controller que extendera a
classe de ControllerPadrao, criagdo de Seeder e até mesmo rotas personalizadas.
Vale salientar que os métodos serao apresentados, porém a descricdo bem

detalhada constara nos proprios arquivos do sistema, logo acima dos métodos.

1. MIGRATION

Para criar uma migration € necessario executar o comando no terminal:

% php artisan make:migration CreateNomeTabelaTable

A nova migrations sera criada no diretorio database\migrations. Cada nome
de arquivo de migragao contém um timestamp que permite ao Laravel determinar a
ordem das migrations.

Cada migration possui dois métodos: up e down. O primeiro € utilizado para

criar a tabela e o segundo para dropa-la.

public function up()

:ESTRUTURA. ' .sistemas", function (Blueprint $table} {

$table->string(' nome",

$table->string(’'slug”,

Para criar a tabela utiliza-se o método estatico “create” da classe Schema. O
primeiro parametro € o nome da tabela e o segundo parametro € uma fungao onde
sera adicionado os campos a tabela.

O nome da tabela por padrao é criado com: nome_schema.nome_tabela.

Para resetar a base de dados:

% php artisan migration:reset

1.1 METODOS

% S$table->id() / Para criar um campo como chave primaria.

% $table->string(‘'nome do campo’, tamanho) // Para criar um campo Varchar.

% S$table->boolean(‘'nome do campo’) // Para criar um campo booleano.

% S$table->integer(‘nome do campo’)

% $table->smallinteger(‘nome do campo’)

% S$table->biginteger(‘nome do campo’)

% S$table->timestamp(‘nome do campo’) // Para criar um campo timestamp

% S$table->date(‘nome do campo’) // Para criar um campo do tipo data

% S$table->string(‘campo’)->default(‘valor’) // Para criar um campo com valor
default.

$table->timestamps() // para criar colunas de created_at e updated_at.

Para criar uma chave estrangeira:

% S$table->foreign(nome_fk’)->references(‘pk’)->on(‘tabela_estrangeira’);
1.2 DOCUMENTACAO LARAVEL

https://laravel.com/docs/8.x/migrations#available-column-types

2. SEEDERS

Os seeders servem unicamente para popular a base de dados rapidamente,
sem a necessidade de ter que criar novos registros manualmente sempre.

Para gerar um seeder, execute o comando make:seeder Artisan. Todos os
seeders gerados pelo framework serao colocados no diretério database/seeders.

Para criar um seeder usa-se o0 seguinte comando.

% php artisan make:seeder UserSeeder

Para executar as migrations com os seeders imediatamente, pode-se usar o

comando:

% php artisan migrate --seed

https://laravel.com/docs/8.x/migrations#available-column-types

2.1 DOCUMENTACAO LARAVEL

https://laravel.com/docs/8.x/seeding

3. ROTAS

As rotas sao os caminhos criados na url para poder direcionar o usuario a

uma pagina ou a enviar dados. Todas as rotas possuem um método HTTP como:

% GET;

% POST;

% PUT;

% PATCH;
% DELETE;
% OPTIONS;

As rotas default do laravel sdo as rotas:

< INDEX;

% CREATE;
% STORE;
% EDIT;

% SHOW,

% UPDATE;
% DELETE;

3.1 METODOS

Os métodos referentes a cada um desses métodos é:

% Route::get($uri, $callback);
% Route::post($uri, $callback);

R
L X4

Route::put($uri, $callback);
Route::patch($uri, $callback);
Route::delete($uri, $callback);

» Route::options($uri, $callback);

9,
%

4

L)

%

4

L)

L)

E possivel criar uma rota passando a url como primeiro parametro, e um
array com a classe do Controller na primeira posigao, e o método a se utilizar como

segunda posigao.

% Route::get('/sistemas’, [SistemaController::class, 'index’])

Também é possivel utilizar o método Route::resources(‘url’, Class::class) para

criar todas as rotas padrées em apenas uma unica linha.

3.3 ROTAS NO OMNI

Para criar as rotas defaults no Omni, basta cadastrar a rotina. O sistema cria
as rotas automaticamente.

Ao iniciar um novo sistema é necessario criar uma fungao para botar um
prefixo de slug, e um prefixo no nome para todas as rotas do sistema.

Também é necessario chamar o método RouteHelper::routes(), onde o
primeiro parametro € o ID do sistema a ser criado, e o segundo parametro € uma

identificacado se a rota sera web ou api.

p:prefix("funico")->name{Sistema: : a . "Y-»group(function () {

ner: :routes{Sist : ; elper::1IS _WER);

Se for necessario, € possivel adicionar novas rotas dentro desse grupo como

mencionado no inicio desse topico.

3.4 DOCUMENTACAO LARAVEL

https://laravel.com/docs/8.x/routing

4. MODEL

Para a utilizacdo basta estender a classe App\Models\ModelPadrao e

importar a trait de App\Models\ModelAcoesPadrao.

4.1 TABELA

Para informar a tabela basta atribuir o atributo $table ao valor de

schema.table

protected $table Sistema::ESTRUTURA . '.rotinas’;

4.2 ATRIBUTOS SIMPLIFICADOS

Para informar os atributos do model basta inicializar o construct e informar

dentro do atributo de colunas um vetor.

putOptions("Mome', Tipagem::TEXTO)),

Por padréao, é necessario instanciar a classe App\Structural\Attribute,
passando como primeiro parametro 0 nome da coluna na tabela do banco de dados.
O segundo parametro € uma instancia da classe App\Structural\inputOptions onde o
primeiro parametro € o “nome apresentavel’, e o segundo parametro € o tipo do
campo. Os tipos existentes na classe de App\Structural\Tipagem serdo abordados

posteriormente na sesséo de Tipagens.

https://laravel.com/docs/8.x/routing

4.3 ATRIBUTOS COMPLETOS

public function _ construct(array $attributes = [])

dor::LIKE, true, ["max’'=> 2,

parent::__ construct($attributes);

Outros parametros também sao possiveis de serem passados. Dentro da
classe de InputOptions é possivel informar 6 parametros, que sdo o “nome
apresentavel”’, o tipo do dado, o operador padrao do filtro, sua obrigatoriedade, um
array associativo de tamanho maximo e minimo, e uma descrigéo.

Para referenciar uma Relation, é necessario instanciar a classe
App\Structural\Relation e passar como primeiro parametro o nome da relation, e o
segundo parametro como a coluna do model vinculado a relation.

Para definir as opgdes de visibilidade em listas, filtros e grids, pode-se
instanciar a classe ExhibitionOptions e passar como parametro uma variavel
booleana. O primeiro parametro é para listas, o segundo para filtros e o terceiro para
Grids.

4.4 METODOS

getColunas() // Retorna as colunas do model;

getRelacoes() // Retorna as relagbes do model;

getColunaByCampo() // Retorna a coluna buscada pelo nome;

getSelectOptions() / Retorna as colunas ja formatadas para um select;

getinfo() // Retorna as informagdes da Rotina armazenada no BD;
getRouteDefault($action) // retorna a url pronta para a funcionalidade, podendo ser
os padrdes de ‘create’, ‘index’, ‘edit’, ‘destroy’, etc;

getSlug() // Retorna a slug do model.

4.5 Exemplo

stado ds ModelPadrao

olunas = [
Attribute(title', new InputOptions(lsbet 'Titulo', tiesgem: Tipagem
Attribut letter

Sigla®, tipegem: Tipagem:: TEXTO),
new ExhibitionOptions(

Attribute(iso0’, new InputOptions(= . Tipagem

Attribute(slug', new InputOptions(5 ‘ ip

Attribute(< population®, new InputOptions(Isbe YLy i i Tipagem

—srelacoes = [

new Relation(function: 'cidades', camp ; b Cidades

turn HosMany

HasHany

idade

4.6 DOCUMENTACAO LARAVEL

https://laravel.com/docs/8.x/eloquent

5. RELATIONS

Para criar uma Relation deve-se criar uma funcdo dentro do model, que
retorne um método relationship como hasMany, hasOne, belongsTo, onde o primeiro
parametro é a classe relacionada. O segundo e o terceiro parametro podem ser

nulos, mas sao respectivamente a chave atual e a chave estrangeira.

public function sistema(}
I
L

return $this-»>belongsTo(Sistema::class, "sistema_id", "id");

1
J

Para informar ao Model quais sao as relagdes existentes utilize o
$this->relacoes que recebe um array de Relations contendo as informacgdes

necessarias(descrito mais abaixo).

5.1 DOCUMENTACAO LARAVEL

https://laravel.com/docs/8.x/eloguent-relationships

6. CONTROLLER

Para utilizar do ControllerPadrao basta estender a classe
App\Http\Controllers\ControllerPadrao.
No método Construct o controller identifica qual a agao, o sistema e a rotina

que estao sendo utilizadas a fim de poder manusear cada rotina adequadamente.

6.1 METODOS

https://laravel.com/docs/8.x/eloquent-relationships

* Index: Retorna a view de listagem no sistema web, e retorna os dados de tal
rotina na api.

% Create: Retorna a view de cadastro.

% Store: Recebe os dados e efetua a insercdo dos dados no banco de dados.

% Show: Retorna a view de visualizagdo do registro no sistema web, ou
somente o registro procurado no caso da api.

+ Edit: Retorna a view de edi¢&o do registro.

% Update: Recebe os dados e efetua a atualizagcado dos dados no banco de
dados.

% Destroy: Recebe os dados e efetua a remo¢ao dos dados no banco de

dados.

6.2 DOCUMENTACAO LARAVEL
https://laravel.com/docs/8.x/controllers

7. COMPONENTES

Principais componentes disponiveis:

1. Form (dir)

a. form

b. help

c. Inputs (dir)
i. checkbox
ii. switch
iii. color
iv. datalist
v. date

vi. externo

vii. externo-offcanvas
viii. ~ file

iX. number

X. password

xi. radio

Xii. range
xiii. select
xiv. text
xv. email
2. Grid (dir)
a. grid
3. Table (dir)
a. filtros
b. listagem

Para entender melhor os atributos disponiveis acesse seus respectivos

controladores em app/View/Components.

Ainda estamos criando os inputs que faltam, a lista pode estar desatualizada no momento da leitura

8. VIEW

As views s6 serdo utilizadas em paginas customizadas. Caso nao criar a
respectiva view sera gerado automaticamente a pagina com base nos colunas
preenchidas no Model. Para utilizar uma view customizada, apenas precisa-se criar
uma view no diretério do respectivo sistema. Lembrando que os nomes das views

utilizadas pelo ControllerPadrao sao a index e a create.

8.1 EXEMPLO

“Ah, quero criar uma view em Frotas!”

< Execute o comando php artisan view:make Frota/Model/Create e php artisan
view:make Frota/Model/Index

RS
%

A view de create recebe a variavel $editar com as informacgdes do registro, estando

assim em seu modo “update”.

9. TREE

Para poder criar uma tree, primeiro deve-se cadastra-la na rotina de trees.
Posteriormente é necessario que O model estenda a classe
App\Models\ModelTreePadrao para que obtenha as colunas parent id, depth e
ordem que sao necessarias na tree.

Se necessario, pode-se criar um controller e estender a classe
App\Http\Controllers\Estrutura\TreeNodeControllerPadrao para sobrescrever o0s

métodos.

9.2 CONFIGURACOES

@php
$modelTree = \App\Models‘\Estrutural\Tree::class;
@endphp
x-tree.tree :id="$modelTree::TREE_CATEGORIA"
sconfig="[
$modelTree: : CONFIG NODE LOADED TO EDIT => $editar-»id 2?2 false,

$modelTree: : CONFIG MANIPULAVEL » true,

$modelTree: : CONFIG SHOW CURRENT NODE > true,
$modelTree: : CONFIG SHOW CURRENT DEPTH => false

Para chamar o componente deve-se usar o componente x-tree.tree, onde o
parametro id recebe o ID da tree, e o parametro config deve ser um array
associativo. Para cada configuragio ha wuma constante criada em

App\Models\Estrutura\Tree.

% CONFIG_NODE_LOADED_TO_EDIT // Se a arvore iniciara com um node
especifico selecionado;

% CONFIG_MANIPULAVEL /] Se é possivel criar, renomear e deletar os nodes

% CONFIG_SHOW_CURRENT_NODE // Se é possivel de editar dados

referentes ao node selecionado;

CONFIG_SHOW_CURRENT_DEPTH // Se é possivel de editar dados

referentes ao nivel do node selecionado;

0
o

9.3 TREE JAVASCRIPT

import { Tree } from "../Tree.js’;

"Servico‘\\Categoria®});

Para dimensionar uma nova tree, basta importar o modelTree e estende-lo.
Ao instanciar o objeto, faz-se necessario utilizar como primeiro parametro a
configuracdo (coletada via jQuery do atributo data-config), e como segundo
parametro um objeto onde pode ser informada a rotina através do nome do

Sistema/Model.
94 DOCUMENTA(;AO JSTREE

https://www.jstree.com/

10. MENSAGERIA

10.1 CLASSE DE MESSAGE HELPER

Utilizar a classe MessageHelper para disparar as mensagens.

10.2 METODOS

getCodeExceptionBylnstance() // Obtém uma Messege de acordo com a exception
passada por parametro;

response() // Método para disparar uma resposta padrao;

customResponse() // Mensagens customizadas, obedecendo o minimo da estrutura

de respostas.

10.3 ENUM MESSAGE

Os textos podem ser obtidos pelo enum de Message
(app/Exceptions/Message.php):

Utilizando o método de message() vocé obtém o texto cadastrado em
app/Exceptions/CodeList.json ou no local alterado via env (conforme descrito nas

variaveis do env).

10.4 EXEMPLO

try{
//something

}catch (Exception $e){

return MessageHelper::response(false, $this->messegeByException($e));

MessageHelper::response(false, Message::ERRO_GERAL);

MessageHelper::response(false, Message::ERRO_GERAL, $dados,

$mensagem_customizada);

11. API

Para utilizar a APl é necessario estar autenticado. Essa autenticacao é
realizada através de um Bearer Token, obtido apds a autenticacao feita pela rota

POST http://localhost/api/login onde se é enviado um email e uma senha através

dos atributos “email” e “password”.

http://localhost/api/login

Para acesso a qualquer funcionalidade ou qualquer rotina, deve-se acessar a
rota onde o primeiro diretério sera “/api”. O resto se mantém igual a parte WEB do

sistema.

11.2 EXEMPLO

11.2.1 Rota Web

http://localhost/estrutura/sistema

11.2.2 Rota Api

http://localhost/api/estrutura/sistema

12. ENV

Além das variaveis necessarias para o laravel trabalhar, temos mais algumas

opgoes:

12.1 APP_DEBUG (BOOLEAN)

Permite estourar exceptions.

12.2 AP|_DEBUG (BOOLEAN)

Permite estourar exceptions na api.

12.3 ENABLE_ALL_PERMISSIONS (BOOLEAN)

Libera todas as permissdes no sistema.

12.4 DEBUGBAR_ENABLED (BOOLEAN)

Exibe a barra de informagdes no final da pagina.

12.5 APP_CLIENTE (STRING)

Nome do cliente que esta instalado, um por host.

12.6 SESSION_LIFETIME (INT EM MINUTOS)

Tempo da sesséo no php. Padrédo é 120 minutos (2h).

12.7 JWT_SECRET (STRING, 64 BITS OU MAIS)

Chave para criptografia do token de login na API.

12.8 CODE_LIST (string, diretorio)

Possibilita trocar o diretorio do arquivo de mensagens de erro.

13. EXTRAS

Documentacgao a ser estudada para melhor entendimento do ecossistema:

% https://laravel.com/docs/8.x

% https://getbootstrap.com/docs/5.1/getting-started/introduction/

https://getbootstrap.com/docs/5.1/getting-started/introduction/

