
Manual
Para poder criar uma rotina no sistema será necessário no mínimo criar uma

migration e um model. Se for necessária uma tela que fuja do padrão, uma view

deverá ser criada também. Também deverão ser criados os registros de rotina e os

registros de menu.

Para criar a rotina no seeder da rotina, basta referenciar o nome, o

prefixo(nome do sistema só para acesso rápido), slug (AppHelper::getClassName

faz o slug perfeitamente referenciando a classe). Classes de Model e Controller,

além de referenciar o id do sistema.

Para criar o menu, no seeder da rotina, basta referenciar o nome, o ícone, a

ordem em que irá aparecer, o id do sistema, a rota que o menu irá redirecionar, a

ação executada, qual a rotina que o menu utiliza e qual o menu pai desse menu.

Outras features podem ser realizadas criando um controller que extenderá a

classe de ControllerPadrao, criação de Seeder e até mesmo rotas personalizadas.

Vale salientar que os métodos serão apresentados, porém a descrição bem

detalhada constará nos próprios arquivos do sistema, logo acima dos métodos.

1. MIGRATION

Para criar uma migration é necessário executar o comando no terminal:

❖ php artisan make:migration CreateNomeTabelaTable

A nova migrations será criada no diretório database\migrations. Cada nome

de arquivo de migração contém um timestamp que permite ao Laravel determinar a

ordem das migrations.

Cada migration possui dois métodos: up e down. O primeiro é utilizado para

criar a tabela e o segundo para dropá-la.

Para criar a tabela utiliza-se o método estático “create” da classe Schema. O

primeiro parâmetro é o nome da tabela e o segundo parâmetro é uma função onde

será adicionado os campos a tabela.

O nome da tabela por padrão é criado com: nome_schema.nome_tabela.

Para resetar a base de dados:

❖ php artisan migration:reset

1.1 MÉTODOS

❖ $table->id() // Para criar um campo como chave primária.

❖ $table->string(‘nome do campo’, tamanho) // Para criar um campo Varchar.

❖ $table->boolean(‘nome do campo’) // Para criar um campo booleano.

❖ $table->integer(‘nome do campo’)

❖ $table->smallInteger(‘nome do campo’)

❖ $table->bigInteger(‘nome do campo’)

❖ $table->timestamp(‘nome do campo’) // Para criar um campo timestamp

❖ $table->date(‘nome do campo’) // Para criar um campo do tipo data

❖ $table->string(‘campo’)->default(‘valor’) // Para criar um campo com valor

default.

$table->timestamps() // para criar colunas de created_at e updated_at.

Para criar uma chave estrangeira:

❖ $table->foreign(nome_fk’)->references(‘pk’)->on(‘tabela_estrangeira’);

1.2 DOCUMENTAÇÃO LARAVEL

https://laravel.com/docs/8.x/migrations#available-column-types

2. SEEDERS

Os seeders servem unicamente para popular a base de dados rapidamente,

sem a necessidade de ter que criar novos registros manualmente sempre.

Para gerar um seeder, execute o comando make:seeder Artisan. Todos os

seeders gerados pelo framework serão colocados no diretório database/seeders.

Para criar um seeder usa-se o seguinte comando.

❖ php artisan make:seeder UserSeeder

Para executar as migrations com os seeders imediatamente, pode-se usar o

comando:

❖ php artisan migrate --seed

https://laravel.com/docs/8.x/migrations#available-column-types

2.1 DOCUMENTAÇÃO LARAVEL

https://laravel.com/docs/8.x/seeding

3. ROTAS

As rotas são os caminhos criados na url para poder direcionar o usuário a

uma página ou a enviar dados. Todas as rotas possuem um método HTTP como:

❖ GET;

❖ POST;

❖ PUT;

❖ PATCH;

❖ DELETE;

❖ OPTIONS;

As rotas default do laravel são as rotas:

❖ INDEX;

❖ CREATE;

❖ STORE;

❖ EDIT;

❖ SHOW;

❖ UPDATE;

❖ DELETE;

3.1 MÉTODOS

Os métodos referentes a cada um desses métodos é:

❖ Route::get($uri, $callback);

❖ Route::post($uri, $callback);

❖ Route::put($uri, $callback);

❖ Route::patch($uri, $callback);

❖ Route::delete($uri, $callback);

❖ Route::options($uri, $callback);

É possível criar uma rota passando a url como primeiro parâmetro, e um

array com a classe do Controller na primeira posição, e o método a se utilizar como

segunda posição.

❖ Route::get('/sistemas’, [SistemaController::class, 'index’])

Também é possível utilizar o método Route::resources(‘url’, Class::class) para

criar todas as rotas padrões em apenas uma única linha.

3.3 ROTAS NO OMNI

Para criar as rotas defaults no Omni, basta cadastrar a rotina. O sistema cria

as rotas automaticamente.

Ao iniciar um novo sistema é necessário criar uma função para botar um

prefixo de slug, e um prefixo no nome para todas as rotas do sistema.

Também é necessário chamar o método RouteHelper::routes(), onde o

primeiro parâmetro é o ID do sistema a ser criado, e o segundo parâmetro é uma

identificação se a rota será web ou api.

Se for necessário, é possível adicionar novas rotas dentro desse grupo como

mencionado no início desse tópico.

3.4 DOCUMENTAÇÃO LARAVEL

https://laravel.com/docs/8.x/routing

4. MODEL

Para a utilização basta estender a classe App\Models\ModelPadrao e

importar a trait de App\Models\ModelAcoesPadrao.

4.1 TABELA

Para informar a tabela basta atribuir o atributo $table ao valor de

schema.table

4.2 ATRIBUTOS SIMPLIFICADOS

Para informar os atributos do model basta inicializar o construct e informar

dentro do atributo de colunas um vetor.

Por padrão, é necessário instanciar a classe App\Structural\Attribute,

passando como primeiro parâmetro o nome da coluna na tabela do banco de dados.

O segundo parâmetro é uma instância da classe App\Structural\InputOptions onde o

primeiro parâmetro é o “nome apresentável”, e o segundo parâmetro é o tipo do

campo. Os tipos existentes na classe de App\Structural\Tipagem serão abordados

posteriormente na sessão de Tipagens.

https://laravel.com/docs/8.x/routing

4.3 ATRIBUTOS COMPLETOS

Outros parâmetros também são possíveis de serem passados. Dentro da

classe de InputOptions é possível informar 6 parâmetros, que são o “nome

apresentável”, o tipo do dado, o operador padrão do filtro, sua obrigatoriedade, um

array associativo de tamanho máximo e mínimo, e uma descrição.

Para referenciar uma Relation, é necessário instanciar a classe

App\Structural\Relation e passar como primeiro parâmetro o nome da relation, e o

segundo parâmetro como a coluna do model vinculado a relation.

Para definir as opções de visibilidade em listas, filtros e grids, pode-se

instanciar a classe ExhibitionOptions e passar como parâmetro uma variável

booleana. O primeiro parâmetro é para listas, o segundo para filtros e o terceiro para

Grids.

4.4 MÉTODOS

getColunas() // Retorna as colunas do model;

getRelacoes() // Retorna as relações do model;

getColunaByCampo() // Retorna a coluna buscada pelo nome;

getSelectOptions() // Retorna as colunas já formatadas para um select;

getInfo() // Retorna as informações da Rotina armazenada no BD;

getRouteDefault($action) // retorna a url pronta para a funcionalidade, podendo ser

os padrões de ‘create’, ‘index’, ‘edit’, ‘destroy’, etc;

getSlug() // Retorna a slug do model.

4.5 Exemplo

4.6 DOCUMENTAÇÃO LARAVEL

https://laravel.com/docs/8.x/eloquent

5. RELATIONS

Para criar uma Relation deve-se criar uma função dentro do model, que

retorne um método relationship como hasMany, hasOne, belongsTo, onde o primeiro

parâmetro é a classe relacionada. O segundo e o terceiro parâmetro podem ser

nulos, mas são respectivamente a chave atual e a chave estrangeira.

Para informar ao Model quais são as relações existentes utilize o

$this->relacoes que recebe um array de Relations contendo as informações

necessárias(descrito mais abaixo).

5.1 DOCUMENTAÇÃO LARAVEL

https://laravel.com/docs/8.x/eloquent-relationships

6. CONTROLLER

Para utilizar do ControllerPadrao basta estender a classe

App\Http\Controllers\ControllerPadrao.

No método Construct o controller identifica qual a ação, o sistema e a rotina

que estão sendo utilizadas a fim de poder manusear cada rotina adequadamente.

6.1 MÉTODOS

https://laravel.com/docs/8.x/eloquent-relationships

❖ Index: Retorna a view de listagem no sistema web, e retorna os dados de tal

rotina na api.

❖ Create: Retorna a view de cadastro.

❖ Store: Recebe os dados e efetua a inserção dos dados no banco de dados.

❖ Show: Retorna a view de visualização do registro no sistema web, ou

somente o registro procurado no caso da api.

❖ Edit: Retorna a view de edição do registro.

❖ Update: Recebe os dados e efetua a atualização dos dados no banco de

dados.

❖ Destroy: Recebe os dados e efetua a remoção dos dados no banco de

dados.

6.2 DOCUMENTAÇÃO LARAVEL

https://laravel.com/docs/8.x/controllers

7. COMPONENTES

Principais componentes disponíveis:

1. Form (dir)

a. form

b. help

c. Inputs (dir)

i. checkbox

ii. switch

iii. color

iv. datalist

v. date

vi. externo

vii. externo-offcanvas

viii. file

ix. number

x. password

xi. radio

xii. range

xiii. select

xiv. text

xv. email

2. Grid (dir)

a. grid

3. Table (dir)

a. filtros

b. listagem

Para entender melhor os atributos disponíveis acesse seus respectivos

controladores em app/View/Components.

Ainda estamos criando os inputs que faltam, a lista pode estar desatualizada no momento da leitura

8. VIEW

As views só serão utilizadas em páginas customizadas. Caso não criar a

respectiva view será gerado automaticamente a página com base nos colunas

preenchidas no Model. Para utilizar uma view customizada, apenas precisa-se criar

uma view no diretório do respectivo sistema. Lembrando que os nomes das views

utilizadas pelo ControllerPadrao são a index e a create.

8.1 EXEMPLO

“Ah, quero criar uma view em Frotas!”

❖ Execute o comando php artisan view:make Frota/Model/Create e php artisan

view:make Frota/Model/Index

❖ A view de create recebe a variável $editar com as informações do registro, estando

assim em seu modo “update”.

9. TREE

Para poder criar uma tree, primeiro deve-se cadastrá-la na rotina de trees.

Posteriormente é necessário que o model estenda a classe

App\Models\ModelTreePadrao para que obtenha as colunas parent_id, depth e

ordem que são necessárias na tree.

Se necessário, pode-se criar um controller e estender a classe

App\Http\Controllers\Estrutura\TreeNodeControllerPadrao para sobrescrever os

métodos.

9.2 CONFIGURAÇÕES

Para chamar o componente deve-se usar o componente x-tree.tree, onde o

parâmetro id recebe o ID da tree, e o parâmetro config deve ser um array

associativo. Para cada configuração há uma constante criada em

App\Models\Estrutura\Tree.

❖ CONFIG_NODE_LOADED_TO_EDIT // Se a árvore iniciará com um node

específico selecionado;

❖ CONFIG_MANIPULAVEL // Se é possível criar, renomear e deletar os nodes

❖ CONFIG_SHOW_CURRENT_NODE // Se é possível de editar dados

referentes ao node selecionado;

❖ CONFIG_SHOW_CURRENT_DEPTH // Se é possível de editar dados

referentes ao nível do node selecionado;

9.3 TREE JAVASCRIPT

Para dimensionar uma nova tree, basta importar o modelTree e estende-lo.

Ao instanciar o objeto, faz-se necessário utilizar como primeiro parâmetro a

configuração (coletada via jQuery do atributo data-config), e como segundo

parâmetro um objeto onde pode ser informada a rotina através do nome do

Sistema/Model.

9.4 DOCUMENTAÇÃO JSTREE

https://www.jstree.com/

10. MENSAGERIA

10.1 CLASSE DE MESSAGE HELPER

Utilizar a classe MessageHelper para disparar as mensagens.

10.2 MÉTODOS

getCodeExceptionByInstance() // Obtém uma Messege de acordo com a exception

passada por parâmetro;

response() // Método para disparar uma resposta padrão;

customResponse() // Mensagens customizadas, obedecendo o mínimo da estrutura

de respostas.

10.3 ENUM MESSAGE

Os textos podem ser obtidos pelo enum de Message

(app/Exceptions/Message.php):

Utilizando o método de message() você obtém o texto cadastrado em

app/Exceptions/CodeList.json ou no local alterado via env (conforme descrito nas

variáveis do env).

10.4 EXEMPLO

try{

//something

}catch (Exception $e){

return MessageHelper::response(false, $this->messegeByException($e));

}

MessageHelper::response(false, Message::ERRO_GERAL);

MessageHelper::response(false, Message::ERRO_GERAL, $dados,

$mensagem_customizada);

11. API

Para utilizar a API é necessário estar autenticado. Essa autenticação é

realizada através de um Bearer Token, obtido após a autenticação feita pela rota

POST http://localhost/api/login onde se é enviado um email e uma senha através

dos atributos “email” e “password”.

http://localhost/api/login

Para acesso a qualquer funcionalidade ou qualquer rotina, deve-se acessar a

rota onde o primeiro diretório será “/api”. O resto se mantém igual a parte WEB do

sistema.

11.2 EXEMPLO

11.2.1 Rota Web

http://localhost/estrutura/sistema

11.2.2 Rota Api

http://localhost/api/estrutura/sistema

12. ENV

Além das variáveis necessárias para o laravel trabalhar, temos mais algumas

opções:

12.1 APP_DEBUG (BOOLEAN)

Permite estourar exceptions.

12.2 API_DEBUG (BOOLEAN)

Permite estourar exceptions na api.

12.3 ENABLE_ALL_PERMISSIONS (BOOLEAN)

Libera todas as permissões no sistema.

12.4 DEBUGBAR_ENABLED (BOOLEAN)

Exibe a barra de informações no final da página.

12.5 APP_CLIENTE (STRING)

Nome do cliente que está instalado, um por host.

12.6 SESSION_LIFETIME (INT EM MINUTOS)

Tempo da sessão no php. Padrão é 120 minutos (2h).

12.7 JWT_SECRET (STRING, 64 BITS OU MAIS)

Chave para criptografia do token de login na API.

12.8 CODE_LIST (string, diretorio)

Possibilita trocar o diretório do arquivo de mensagens de erro.

13. EXTRAS

Documentação a ser estudada para melhor entendimento do ecossistema:

❖ https://laravel.com/docs/8.x

❖ https://getbootstrap.com/docs/5.1/getting-started/introduction/

https://getbootstrap.com/docs/5.1/getting-started/introduction/

